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Now we consider hypothetical three-dimensional peri- 
odic functions ~*r(X) and q~t,L(X) composed of (,Oa* and % 
respectively. Then 0~r.(X) is given by 

0~,(x) = ~*, (x).  ~ , ( x ) .  

We define ~ [ ( X )  and q~bL(X) as, 

cbfz(X)=(1/V)~G*(H) exp (2rciH. X) ,  (7) 
H 

~br .(X) = (1/V)~Gb(H) exp ( -  2rciH. X) ,  
H 

where 

G~ (H) = ~g,,j  exp ( -  2rciH. Xj) ,  
J 

Go(H) = ~gt, j exp (2tr i l l .  Xi) .  (8) 
J 

Equations (7) and (8) correspond to equations (5) and (6) 
respectively, that is, G(H) is a 'structure factor of the 
atomic wave function' and gj is the Fourier transform of 
the ] th  atomic wave function as defined by equation (3). 
Using the convolution theory we have 

1 
FB(H)  = - ~  ~G*(K) .  G/,(K-H). (9) 

K 

If the Fourier transforms of the atomic wave function, g 's,  
are obtained, the bond structure factor can be calculated 
from equations (8) and (9). 

As a simple example, we consider a hypothetical crystal 
composed of HE molecules which are located at corners 
of unit cells of a simple cubic lattice with their molecular 
axis along the a direction. The lattice constant of 20 atomic 
units (a.u.) and the H - H  distance of 1.4 a.u. were assumed, 
then the fractional coordinate of the hydrogen nucleus is 
x =  0-70/20= 0.035. From equations (8) and (9) we obtain 

Fn(hkl)= (1/V)~g*(h',k',l')g(h'- h , k ' -  k , l ' -  l) 
h',k',l' 

x cos 2rff2h ' -h)  x .  (10) 

g(hkl) is given from the Slater wave function, 

~(ls) (1/l/re) exp ( - r ) ,  
by 

g(hkl) = 8 I/Tr(1 + A,2A*2 ~-1 . . . . .  ht, t, , (11) 

where d~,kz is the reciprocal of the spacing of reflection plane 
(hkl). Calculated values of FB(hkO) for a* and b* directions 
in which g(h'kT) is taken from h', k', l '  = 0 to h', k', l ' =  10 are 
shown in Fig. 1. It is found that the contour map of Fs(hkO) 
which is identical with the bond scattering factor f8 in the 
simple cubic lattice has an anisotropy enlongated in the 
b* direction. 

In order to see the contribution of the bond scattering 
factor fm we consider the structure factor Fo(hkl) without 
the contribution of fB. Fo(hkl) of the crystal is given by 

Fo(hkl) = 2fz4 cos 2zrhx, (12) 
where 

fu  = l ~0*(ls)tp(Is) exp (2tr i l l .  X)dX= (1 + 7~2d~) -1 . 

From equation (1) we obtain 

FvB(hkl) = (na +nb) fH cos 2nhx + (nab/Sab)f~, (13) 

where na =nb = 1/(1 + S,,b)2 = 0.6382 and nab = 2S2b/(1 + S2b) = 
0"7235 (na+no+nab=2) using the VB method, and Sa~,= 
[q)](ls)~ob(ls)dr = 0"7529. The comparison between FvB(hkO) 
and Fo(hkO) for the a* and b* directions is shown in Fig. 1. 
We can see clearly that the contribution of bond electrons 
for the a* direction is larger than that for the b* direction. 
This result is reasonable because the molecular axis of H2 is 
assumed to lie along the a direction, and is similar to the 
result of McWeeny (1952). 

The authors express their thanks to Professor K. Nakatsu 
and Professor S. Naya for their valuable discussions and 
helpful comments on the manuscript, and to Mr M. Fukui 
and Mr Y. Utsumi for their help in the numerical calcu- 
lation. 
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It is pointed out that a method recently suggested for evaluating the radial density distribution of long rods 
is not new and the necessary conditions for its application are emphasized by a simple treatment. 

Fedorov & Aleshin (1966) described a Hankel transform 
method of calculating the radial electron density distribu- 
tion o(r) for long rigid cylindrical molecules with a cylindri- 
cal symmetry of o(r) about the rod axis. Carlson & Schmidt 
(1969), using this method, have examined the relationship 
between theoretical models for o(r) and calculated distribu- 
tions when data for the intensity of scattering by dilute so- 
lutions'are available over a limited range of scattering angle 

( s=0  to S=Smax, s--2 sin 0/2, 0 being the Bragg angle). 
It is the purpose of the present note to point out that 

Fedorov & Aleshin's method is not a new one and that the 
complexities of their analysis can be avoided. In conse- 
quence the necessary assumptions for the method to be val- 
id are clarified. 

The Fedorov & Aleshin method is a variant of the 
Fourier--Bessel transform method used, for example, to 
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deduce o(r) from oriented preparations of tobacco mosaic 
virus (Franklin & Holmes, 1958; see for general aspects 
Vainshtein, 1966). 

The expression used by Franklin & Holmes is 

I Smax 
o(r) = 2re F(s)Jo(2rcsr)sds (1) 

do 
where F(s) is the continuous cylindrically symmetrical 
equatorial structure factor of the rod (with amplitude and 
phase) and J0 is a zero order Bessel function. To apply this 
equation to the scattering by a dilute solution it is necessary 
to establish the relationship between F(s) and the observed 
intensity of scattering by the solution I(s). 

This relationship is presented by Burge & Draper (1967) 
for the special cases of long rigid rods with o(r) = constant, 
e -at2, r2e -ar2. These results imply the general result 

1 
I(s) oc s IF(s)12 " (2) 

Thus equation (1) becomes 

I Smax 
o(r) oc [l(s)ll/2Jo(2rcsr)s3/2ds (3) 

,10 

which is essentially the equation of Fedorov & Aleshin 
(1966). 

The necessary conditions for the validity of equation (3) 
are those for equation (2). These are: (i) s>> 1/L with L the 
rod length; the problem of extrapolating sI(s) to zero 
scattering angle has been considered by Luzzati (1960). 
(ii) The scattering corresponds entirely (in practice pre- 
dominantly) to F(s), i.e. at a given radius the cylindrically 
symmetrical rod density is assumed to be constant along its 
length. 
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For those reflexions of which the sign is determined by a relatively small number of heavy atoms, the known 
heavy-atom contribution is subtracted from the observed structure factor to obtain the magnitude and the 
sign of the light-atom contribution. Thereafter the signs of the reflexions that do not have appreciable heavy 
atom contributions are found using the triple product sign relationship. 

As the solution of structures with a relatively small number 
of heavy atoms is straightforward in most cases, direct 
methods of sign determination have been used onb rarely for 
these structures. It will be shown in this communication that 
the solution can easily be obtained by using the well- 
known triple product sign relationship 

Sh+h, ~Sh .  Sh,. (1) 

The procedure described below is similar to the method 
used by Subramanian (1967) to solve a structure in projec- 
tion. It is assumed that the positions of the heavy atoms are 
known and that there is a sufficient number of reflexions 
whose signs are determined by the heavy atoms. These 
reftexions do not obey the probability relation (1). On 
subtracting the heavy atom contribution from the observed 
structure factors of these reflexions, one obtains the mag- 
nitude and the sign of the light atom contributions for these 
reflexions. Thereafter one can solve the remaining light 
atom structure by applying equation (1) to obtain the signs 
of the reflexions that do not have appreciable contributions 
from the heavy atoms. 

The procedure was used to solve the structure of the 
complex Au[S2C2(CN)2]2Au[S2CN(C4H9)2]2 (to be pub- 
lished). The space group was found to be P21/c, with two 
formula units per unit cell. The reflexions hkl (h=2n, 
k + l = 2 n )  were all very strong and the gold atoms were 
placed at the (special) positions 000, ½00, -}½½ and 0½½. 1337 

observed 'strong' reflexions (with equal positive contribu- 
tions from the gold atoms) and 538 observed 'weak' re- 
flexions (without any contributions from the gold atoms) 
were used. 

The first step was a calculation of the Wilson plot. The 
following expression (Parthasarathy, 1966) was used: 

(I>~=KL<~.~f ~ exp (-- 2Bz sin 2 0/22))h 
+ K~<IFHI z exp ( -  2B~ sin 20/),2)>h (2) 

where l=(K[Fobsl 2) is the observed intensity on a relative 
scale, K = KL = Kn is the scale factor, ~z, denotes a summa- 
tion over all light atoms in the unit cell, FH is the heavy 
atom contribution to the structure factor and BL and BH are 
the overall temperature factor parameters of the light and 
heavy atoms respectively. The average is taken over re- 
flexions h within a given sin 0 interval. 

For the 'weak' reflexions (FH=0) the second term in 
equation (2) vanishes and a Wilson plot for these reflexions 
gave the scale factor KL (1.29) and the value of BL 
(3"24 AE). On substituting these results in equation (2) a 
Wilson plot for the 'strong' reflexions gave the scale factor 
KH (1-26) and the value of BH (2"91 /~2). A small difference 
in KL and KH will not effect the following steps. 

The second step is the calculation of the normalized 
structure factors E. The formulae normally used for the 
calculation of E values do not make sense for a structure 
containing heavy atoms. For the corresponding light atom 


